Optimal Positioning of Strips for Heat Transfer Reduction within an Enclosure
نویسندگان
چکیده
Heat transfer reduction capabilities of a vertical or a horizontal adiabatic partial partition fixed in a differentially heated cavity with insulated top and bottom walls are analyzed and compared. The effects of length and location of the partition is taken into account for aspect ratios from 1 to 4 and for Rayleigh numbers from 103 to 106. Different characteristics of square and higher aspect ratio cavities are compared and a comprehensive correlation of the heat transfer reduction is introduced, incorporating all the pertinent parameters. Based on our results, vertical baffles more efficiently reduce heat transfer, in most cases.
منابع مشابه
Natural Convection Heat Transfer within Octagonal Enclosure
The problem of steady, laminar and incompressible natural convection flow in an octagonalenclosure was studied. In this investigation, two horizontal walls were maintained at a constant hightemperature, two vertical walls were kept at a constant low temperature and all inclined walls wereconsidered adiabatic. The enclosure was assumed to be filled with a Bousinessq fluid. The studyincludes comp...
متن کاملتحلیل قانون دوم برای جابجایی آزاد جریان هوا در محفظه L شکل با یک جسم مولد گرما
In this research, the second Law for free convection of air flow in L-shaped enclosure with a heat generating body, is numerically studied. In this study, the continuity, momentum and energy equations are solved, using a finite volume method and SIMPLER algorithm. By positioning the heat generating body at three different locations inside the enclosure for three aspect ratios of enclosure in va...
متن کاملNumerical modelling of double-diffusive natural convection within an arc shaped enclosure filled with a porous medium
Numerical study of double-diffusive natural convective heat transfer in a curved cavity filledwith a porous medium has been carried out in the current study. Polar system has beenselected as coordinate system. As a result, all equations have been discredited in r and θdirections. Brinkmann extended Darcy model has been utilized to express fluid flow inporous matrix in the enclosure. Smaller and...
متن کاملMixed Convection Heat Transfer of Water-Alumina Nanofluid in an Inclined and Baffled C-Shaped Enclosure
In this article, mixed convection heat transfer of alumina-water nanofluid in an inclined and baffled C-shape enclosure is studied. It is assumed that the flow is laminar and steady. There is no energy production, energy storage and viscous heat dissipation. Furthermore, the nanofluid is considered as a continuous, Newtonian and incompressible fluid. Governing equations are discretized by finit...
متن کاملNumerical simulation of mixed convection heat transfer of nanofluid in an inclined enclosure by applying LBM
Mixed convection of Cu-Water nanofluid is studied numerically in a shallow inclined enclosure by applying lattice Boltzmann method. The D2Q9 lattice and internal energy distribution function based on the BGK collision operator are used in order to develop the thermal flow field. The enclosure's hot lid has the constant velocity of U0 while its cold lower wall has no motion. Moreover, sidewalls ...
متن کامل